
The exponent z for the dynamics of polymer chains in the presence of hydrodynamic and

excluded volume interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 L111

(http://iopscience.iop.org/0305-4470/11/5/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 5, 1978. Printed in Great Britain 

LE'lTER TO THE EDITOR 

The exponent z for the dynamics of polymer chains in the 
presence of hydrodynamic and excluded volume interactions 

M G Brereton and S Shah, 
Department of Physics, University of Leeds, Leeds, LS2 9JT, UK 

Received 17 March 1978 

Abstract. A new calculation is presented for the effect of excluded volume interactions on 
the critical exponent z for polymer dynamics. 

For a polymer molecule in a good solvent all characteristic lengths 6 are expected to 
depend on the number of links N (and hence the molecular weight) as 

& - N U .  (1) 
For the dynamical properties, describable in terms of a relaxation time 7, a new 
exponent z is introduced by 

?-C$L-NYZ. (2) 

In terms of these exponents the macroscopic diffusion constant D can be shown 
(de Gennes 1976) to depend on N as 

(3 1 D - N(z-2)Y 

Debye and Bueche showed that from the point of view of the diffusional properties 
a single polymer molecule in a solvent behaves as a rigid sphere. Using Stokes' law in 
d dimensions a hydrodynamic radius RH can be defined by 

kT 
D - -  

I lRg2 (4) 

where 7 is the solvent viscosity. Combining (3) and (4) we see that the hydrodynamic 
radius depends on N as 

(5  1 R~ - ~ ~ ( ~ - 2 ) / ( d - 2 )  

For the original scaling hypothesis to be valid no new scaling lengths should be 
introduced and R H  - N u  which implies that the dynamic exponent z is determined as 

z = d. (6) 
Recently Moore and Jasnow (1977) have treated the effect of hydrodynamic and 

excluded volume interactions on the relaxational internal modes of a polymer chain. 
Their method uses the E = 4 - d expansion and they found 

~ = 2 + ( 1 / ~ ) - ~ = 4 - ( ~ / 4 ) - ~ # d  (7 ) 
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and consequently they infer that RH will not have the same exponent Y as the 
end-to-end vector. In their result the (2 + (l /v))  term is the effect of excluded volume 
in the absence of hydrodynamic interactions and agrees with an earlier conjecture of 
de Gennes (1976). The ( - E )  in term in (7) comes from the hydrodynamic interactions 
calculated in the absence of the excluded volume effects. In this Letter we wish to 
show that the excluded volume effects also affect the friction coefficient and that it is 
possible to recover the z = d result to at least O(E’). Alternatively a new exponent can 
be introduced to describe the molecular weight dependence of the friction coefficient 
and used to discuss the recent experimental results of Adam and Delsanti (1977). 

We have shown elsewhere (Brereton and Rusli 1977) that the equation of motion 
for a polymer molecule can be written as 

where the yii and $Iii may be regarded as generalisations of the usual friction and 
spring force constants of the Rouse model, and vi represents only the fast processes 
affecting the motion of the ith monomer. 

The yi j  and aij are determined by the correlations of the random forces ti and the 
polymer chain equilibrium conformation through the fluctuation dissipation relations 

2 Y i j a ( T ) =  kT(Vi(t) V j ( t + T ) )  (9) 

a.. = kTr . .  where (r-l)ij = (ri . ri>. (10) 

In particular the spring constant is determined entirely by the conformational cor- 
relation function ( r i .  ri). If excluded volume effects are incorporated, then 

(ri . ri> - 121i -j12” 

and this leads directly, through (lo), to a mode-dependent spring constant a, 
a, - kT(E)2u+1 N 

where 

If the random forces are assumed to come entirely from the solvent then we can take 
yii - yoSii and the relaxation time for the n th normal mode is given by 

2 U C l  -=--(;) 1 an 
Tn YO 

and so z = 2 + (1/v) in agreement with an earlier conjecture by de Gennes. However, 
although excluded volume effects have been incorporated into the calculation of R,, 
they were neglected when yii was set equal to Siiyo. We now show that they do in fact 
contribute to the friction coefficient in a very significant manner. If V(ri -ri) is the 
interaction energy between monomers at ri and ri, the excluded volume force can be 
written as 
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Using the projection operator technique of Mori (1965) we can project fi onto the set 
of monomer coordinates rm and write 

where r is already given by (10) and hi is essentially defined by this equation. 
If we denote by yo and SZg, the friction coefficient and spring constant in the 

absence of excluded volume respectively, then with the inclusion of excluded volume 
interactions the equation of motion (8) can still be written as 

and 

2yij = ( s i . s j ) = 2 y o + ( h i . h j ) .  (16) 
Using Gaussian statistics for the {ri} ,  terms like ( r j . f i )  which appear in (15)  can be 
evaluated to give 

1 
( r j . f i ) = - C  

2 k  

In terms of the normal mode coordinates SZ, = R(p) where p = n / N :  

For a delta function interaction V(k) = VO and in three dimensions, the corrections to 
Ro go as p-l”, i.e. N1’2, whereas in four dimensions the leading correction is 
logarithmic and we can write 

SZh) = SZo(p)[l - a ln(N/n)] - N-2-a (19) 
where a represents the conglomeration of a lot of constants, etc, including Vo. 
Following a regular procedure (Moore and Jasnow 1977) a is chosen so that in 
d = 4 - E  dimensions - p 2 v + l -  N - 2 V - 1  

in agrement with (1 l), i.e. 

a = 2 v - 1 .  ( 2 0 )  
Using essentially the same methods, the correlation function (hi . hi), which deter- 
mines the correction of the excluded volume effects to the friction coefficient, can be 
calculated. The result is, using (13) for hi :  

The second term of (21) leads to a mode-p-dependent friction coefficient, which is not 
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of immediate concern here. For the slowest normal modes p - 0 and the first term 
dominates and is given by 

(fi.fi)=(n) 6V0 1 [ 4 - e x p ( - ~ l i - j l ) ( ~ + ~ ~ l i - j l ) + $ e x p ( - i k  k212 2 2 2  1 l i - j l ) ] .  
k 

(22) 

Again the leading corrections are of order In N in four dimensions and the mode- 
dependent friction coefficient y(p)  can be written as 

y(p)=yo( l+b  lnN)+termsin(p2) .  (23) 
Again b contains constants including V;/yo .  For the lowest-order modes the relax- 
ation time is given by 

1 n(p) sZo(p) 1 - a l n N  -- -- 
T ( P )  Y ( P )  Yo  1 + b l n N '  

If the denominator is expanded to give 

1 no 
T ( P )  Yo  
- = - [ l - ( a + b ) l n N + ( b 2 + a b ) l n 2 N -  . . .] 

then in the same spirit that the value for a was chosen, we choose b so that this series 
can be more accurately resummed to give 

exp[ - (a  + b )  In NI = N-(a+b). (25) 

For this to be so, we need b = a, therefore we have that in the presence of excluded 
volume interactions 

(26) 
2 + a + b  = ~ 2 ( 1 + a )  

4 p I - N  
As we have already determined a = 2 v  - 1 (equation (20)), we have that ~ ( p ) -  N4" 
giving for the dynamical exponent z = 4 ,  i.e. to order E', z retains its value at 
z = d = 4. This can now be combined with the effects of hydrodynamic interactions 
which have been calculated by Moore and Jasnow in the absence of excluded volume 
effects to give 

z = 4 - E = d .  (27) 
Thus the second, and more important, conjecture of de Gennes that z = d is verified 
to order E and consequently the hydrodynamic radius RH (equation ( 5 ) )  depends on N 
in the same way as the end-to-end vector is dependent as N". Thus no new length 
scale needs to be introduced and the scaling laws proposed by de Gennes remain valid. 

However if the experimental results of Adam and Delsanti (1977) and the analysis 
of Daoud and Jannik (1978) are accepted then they give 

(28) 
for a good solvent. This suggests that instead of expanding the denominator as in (24) 
we write 

z = 2.85 f 0.05 
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The exponent a is still given by equation (20) and so we obtain for z in the presence of 
hydrodynamic interactions 

2 v  + 1 +b(E) 
Z ( E ) =  - E .  

V 

In three dimensions ( E  = 1) we use v = 0.6 and if we set z = 2.85, we get 

b = 0.1 1. (32) 
The alternative procedure of setting b = a, gives 

b = U  = ~ / 8  ~ 0 . 1 2 5 .  (33) 
From either point of view our analysis suggests that excluded volume interactions 

also 'renormalise' the friction coefficient which now becomes weakly dependent on 
the molecular weight as M a  where a - 0.1. 
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